What can we learn about quarks, gluons and proton’s internal structure from supercomputer simulations?

Krzysztof Cichy
Adam Mickiewicz University, Poznań, Poland

The speaker is supported by the National Science Center of Poland SONATA BIS grant No 2016/22/E/ST2/00013 (2017-2022).
Outline of the talk

1. Standard Model and QCD
2. Lattice QCD
3. Structure of the proton
4. Summary and prospects

Some papers with results presented here:

Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
- The strong interaction responsible for:
• QCD is the accepted theory of the strong interaction.
• The strong interaction responsible for:
 ★ binding nucleons into nuclei,
Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
- The strong interaction responsible for:
 - binding nucleons into nuclei,
 - binding quarks into mesons and baryons,
QCD is the accepted theory of the strong interaction. The strong interaction responsible for:

- binding nucleons into nuclei,
- binding quarks into mesons and baryons,
Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
- The strong interaction responsible for:
 ★ binding nucleons into nuclei,
 ★ binding quarks into mesons and baryons,
 ★ 99% of mass of the visible Universe.
Quantum Chromodynamics (QCD)

• QCD is the accepted theory of the strong interaction.
• The strong interaction responsible for:
 ★ binding nucleons into nuclei,
 ★ binding quarks into mesons and baryons,
 ★ 99% of mass of the visible Universe.
• QCD is formally similar to QED, but crucially different.
Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
- The strong interaction responsible for:
 - binding nucleons into nuclei,
 - binding quarks into mesons and baryons,
 - 99% of mass of the visible Universe.
- QCD is formally similar to QED, but crucially different.
Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
- The strong interaction responsible for:
 - binding nucleons into nuclei,
 - binding quarks into mesons and baryons,
 - 99% of mass of the visible Universe.
- QCD is formally similar to QED, but crucially different.

<table>
<thead>
<tr>
<th>HIGH ENERGY</th>
<th>LOW ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>asymptotic freedom</td>
<td>confinement</td>
</tr>
<tr>
<td>short distances</td>
<td>large distances</td>
</tr>
<tr>
<td>quarks & gluons</td>
<td>hadrons & glueballs</td>
</tr>
<tr>
<td>perturbative</td>
<td>non-perturbative</td>
</tr>
</tbody>
</table>
Quantum Chromodynamics (QCD)

- QCD is the accepted theory of the strong interaction.
- The strong interaction responsible for:
 - binding nucleons into nuclei,
 - binding quarks into mesons and baryons,
 - 99% of mass of the visible Universe.
- QCD is formally similar to QED, but crucially different.

<table>
<thead>
<tr>
<th>HIGH ENERGY</th>
<th>LOW ENERGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>asymptotic freedom</td>
<td>confinement</td>
</tr>
<tr>
<td>short distances</td>
<td>large distances</td>
</tr>
<tr>
<td>quarks & gluons</td>
<td>hadrons & glueballs</td>
</tr>
<tr>
<td>perturbative</td>
<td>non-perturbative</td>
</tr>
</tbody>
</table>

Non-perturbative methods needed ⇒ **Lattice QCD**.
We introduce a 4D hypercubic lattice:

- quark fields on lattice sites,
- gluon fields on lattice links.
Lattice formulation

- We introduce a 4D hypercubic lattice:
 - quark fields on lattice sites,
 - gluon fields on lattice links.

- Gauge invariant objects:
 - Wilson loops,
 - quarks and antiquarks connected with a gauge link.

Source: JICFuS, Tsukuba
We introduce a 4D hypercubic lattice:

- quark fields on lattice sites,
- gluon fields on lattice links.

Gauge invariant objects:

- Wilson loops,
- quarks and antiquarks connected with a gauge link.

Lattice as a regulator:

- UV cut-off – inverse lat. spac. a^{-1},
- IR cut-off – inverse lat. size L^{-1}.

Source: JICFuS, Tsukuba
• We introduce a 4D hypercubic lattice:
 ★ quark fields on lattice sites,
 ★ gluon fields on lattice links.

• Gauge invariant objects:
 ★ Wilson loops,
 ★ quarks and antiquarks connected with a gauge link.

• Lattice as a regulator:
 ★ UV cut-off – inverse lat. spac. a^{-1},
 ★ IR cut-off – inverse lat. size L^{-1}.

• Remove the regulator:
 ★ continuum limit $a \to 0$,
 ★ infinite volume limit $L \to \infty$.
• Lattice QCD can be simulated on a (super)computer!
• Lattice QCD can be simulated on a (super)computer!
• QCD path integral: \[Z = \int DU \, e^{-S_{\text{gauge}}[U]} \prod_{f=1}^{N_f} \det(\hat{D}_f[U]). \]
Lattice QCD can be simulated on a (super)computer!

QCD path integral:

\[Z = \int DU \ e^{-S_{\text{gauge}}[U]} \prod_{f=1}^{N_f} \det(\hat{\mathcal{D}}_f[U]). \]

Multidimensional integral \(\Rightarrow \) Monte Carlo methods.
Simulating QCD on the lattice

- Lattice QCD can be simulated on a (super)computer!
- QCD path integral: \(Z = \int DU \; e^{-S_{\text{gauge}}[U]} \prod_{f=1}^{N_f} \det(\hat{D}_f[U]) \).
- Multidimensional integral \(\Rightarrow \) Monte Carlo methods.
- How many dimensional integral?
 - typical lattice size: \(48 \times 48 \times 48 \times 96, 64 \times 64 \times 64 \times 128 \),
 - each lattice site needs 12 spin-color components.
Lattice QCD can be simulated on a (super)computer!

QCD path integral: $Z = \int DU \ e^{-S_{gauge}[U]} \prod_{f=1}^{N_f} \det(\hat{D}_f[U])$.

Multidimensional integral ⇒ Monte Carlo methods.

How many dimensional integral?

- typical lattice size: $48 \times 48 \times 48 \times 96$, $64 \times 64 \times 64 \times 128$,
- each lattice site needs 12 spin-color components.

This gives integral dimension of order 10^8–10^9.
Simulating QCD on the lattice

- Lattice QCD can be simulated on a (super)computer!
- QCD path integral: $Z = \int DU \, e^{-S_{\text{gauge}}[U]} \prod_{f=1}^{N_f} \det(\hat{D}_f[U])$.
- Multidimensional integral \Rightarrow Monte Carlo methods.
- How many dimensional integral?
 - typical lattice size: $48 \times 48 \times 48 \times 96$, $64 \times 64 \times 64 \times 128$,
 - each lattice site needs 12 spin-color components.

 This gives integral dimension of order 10^8–10^9.
- Hence, huge computational resources needed!
- QCD was one of the first branches of science that “asked” for such computational resources and thus inspired the development of supercomputers.
Simulating QCD on the lattice

- Many machines dedicated to Lattice QCD were constructed:
 - 1985 – GF11, 11 GFlops
 - 1995-2005 – APE100, APEmille, 100 GFlops – 15 TFlops
 - 1998-2005 – QCDSP, QCDOC, 1 TFlops – 10 TFlops
Simulating QCD on the lattice

• Many machines dedicated to Lattice QCD were constructed:
 ★ 1985 – GF11, 11 GFlops
 ★ 1995-2005 – APE100,APEmille, 100 GFlops – 15 TFlops
 ★ 1998-2005 – QCDSP, QCDOC, 1 TFlops – 10 TFlops
 ★ 2009-2015 – QPACE – 100 TFlops – 310 TFlops

• Most calculations, however, done on general-purpose supercomputers.
Many machines dedicated to Lattice QCD were constructed:

- 1985 – GF11, 11 GFlops
- 1995-2005 – APE100, APEmille, 100 GFlops – 15 TFlops
- 1998-2005 – QCDSP, QCDOC, 1 TFlops – 10 TFlops

Most calculations, however, done on general-purpose supercomputers.

Typical QCD project consists of 2 phases:

- generation of gauge field ensembles – $\mathcal{O}(100)$ Tflop-years per ensemble,
Simulating QCD on the lattice

• Many machines dedicated to Lattice QCD were constructed:
 ★ 1985 – GF11, 11 GFlops
 ★ 1995-2005 – APE100, APEmille, 100 GFlops – 15 TFlops
 ★ 1998-2005 – QCDSP, QCDOC, 1 TFlops – 10 TFlops
 ★ 2009-2015 – QPACE – 100 TFlops – 310 TFlops

• Most calculations, however, done on general-purpose supercomputers.

• Typical QCD project consists of 2 phases:
 ★ generation of gauge field ensembles – \(\mathcal{O}(100) \) Tflop-years per ensemble,
 ★ calculation of observables – \(\mathcal{O}(100) \) Tflop-years per observable.
• Many machines dedicated to Lattice QCD were constructed:
 ★ 1985 – GF11, 11 GFlops
 ★ 1995-2005 – APE100, APEmille, 100 GFlops – 15 TFlops
 ★ 1998-2005 – QCDSP, QCDOC, 1 TFlops – 10 TFlops
 ★ 2009-2015 – QPACE – 100 TFlops – 310 TFlops

• Most calculations, however, done on general-purpose supercomputers.

• Typical QCD project consists of 2 phases:
 ★ generation of gauge field ensembles – $O(100)$ Tflop-years per ensemble,
 ★ calculation of observables – $O(100)$ Tflop-years per observable.

Overall, a lattice QCD collaboration (20-50 people) needs annually order $O(1)$ Pflop-years ($O(200)$ million CPU-hours).
Supercomputers in Poland

PROMETHEUS (AGH Kraków)
2.4 PFlops, 53568 cores
279 TB RAM, TOP500 #131

TRYTON (CI TASK Gdańsk)
1.4 PFlops, 38568 cores
180 TB RAM, TOP500 #421

EAGLE (PCSS Poznań)
1.4 PFlops, 32984 cores
121 TB RAM, TOP500 #415

OKEANOS (ICM Warszawa)
1.1 PFlops, 26016 cores
139 TB RAM, TOP500 #480
Some machines used by our collaboration (Extended Twisted Mass Collaboration)

- **Piz Daint (Cray)** – CSCS, Switzerland (25.3 PFlops)
- **Stampede 2 (Dell)** – UT Austin, USA (18 PFlops)
- **Titan (Cray)** – Oak Ridge National Laboratory, USA (17.6 PFlops)
- **JUQUEEN (IBM)** – Forschungszentrum Jülich, Germany (5.9 PFlops)
- **SuperMUC (IBM)** – Garching, Germany (3 PFlops)
- **Prometheus (HP)** – AGH Kraków, Poland (2.4 PFlops)
- **JURECA (T-Platforms)** – Forschungszentrum Jülich, Germany (2.2 PFlops)
- **Fermi (IBM)** – CINECA, Italy (2.1 PFlops)
- **Eagle (Huawei)** – PCSS Poznań, Poland (1.4 PFlops)
- **Okeanos (Cray)** – ICM Warszawa, Poland (1.1 PFlops)
Some of the aspects of QCD that can be studied on the lattice:
Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
- **hadron spectrum**: meson and baryon masses, exotic hadrons
Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
- **hadron spectrum**: meson and baryon masses, exotic hadrons
- **hadron structure**: nucleon charges, EM form factors, parton distribution functions, GPDs, nucleon spin content
Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
- **hadron spectrum**: meson and baryon masses, exotic hadrons
- **hadron structure**: nucleon charges, EM form factors, parton distribution functions, GPDs, nucleon spin content
- **QCD thermodynamics**: QCD phase diagram, deconfinement, chiral symmetry restoration
Lattice QCD

Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
- **Hadron spectrum**: meson and baryon masses, exotic hadrons
- **Hadron structure**: nucleon charges, EM form factors, parton distribution functions, GPDs, nucleon spin content
- **QCD thermodynamics**: QCD phase diagram, deconfinement, chiral symmetry restoration
- **Standard Model parameters**: CKM matrix
Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
- **hadron spectrum**: meson and baryon masses, exotic hadrons
- **hadron structure**: nucleon charges, EM form factors, parton distribution functions, GPDs, nucleon spin content
- **QCD thermodynamics**: QCD phase diagram, deconfinement, chiral symmetry restoration
- **Standard Model parameters**: CKM matrix
- **constraints on effective theories**: χPT, HQET
Some of the aspects of QCD that can be studied on the lattice:

- **QCD parameters**: α_s, Λ_{QCD}, quark masses etc.
- **hadron spectrum**: meson and baryon masses, exotic hadrons
- **hadron structure**: nucleon charges, EM form factors, parton distribution functions, GPDs, nucleon spin content
- **QCD thermodynamics**: QCD phase diagram, deconfinement, chiral symmetry restoration
- **Standard Model parameters**: CKM matrix
- **constraints on effective theories**: χPT, HQET

Some collaborations in LQCD:

- Alpha, BMW, CLS, CP-PACS, ETMC, HALQCD, hotQCD, JLQCD, LHC, LSD, Mainz, MILC, NME, NPLQCD, QCDSF, PNDME, RBC, RQCD, SWME, tmFT, TWQCD, UKQCD, USQCD, WHOT-QCD

in total $\approx 500 - 600$ physicists
Length scales and the interior of proton

- Atom: ~10^{-9} cm
- Nucleus: ~10^{-12} cm
- Proton (neutron): ~10^{-13} cm
- Electron: <10^{-16} cm
- Quark: <10^{-16} cm
Length scales and the interior of proton

atom $\sim 10^{-9}$ cm

nucleus $\sim 10^{-12}$ cm

proton (neutron) $\sim 10^{-13}$ cm

electron $< 10^{-16}$ cm

quark $< 10^{-16}$ cm
Length scales and the interior of proton

atom $\sim 10^{-9}$ cm
nucleus $\sim 10^{-12}$ cm
proton (neutron) $\sim 10^{-13}$ cm
quark $< 10^{-16}$ cm

Krzysztof Cichy
Proton structure

Source: Ignazio Scimemi, review talk on EIC physics, Cracow 2018
Proton structure

Source: Ignazio Scimemi, review talk on EIC physics, Cracow 2018
Proton structure

Source: Ignazio Scimemi, review talk on EIC physics, Cracow 2018

Proton is a very complicated system...
Proton structure

Source: Ignazio Scimemi,
review talk on EIC physics,
Cracow 2018

Proton is a very complicated system...
... and its structure is more complex the closer we look!
Proton structure

Proton is a very complicated system...
... and its structure is more complex the closer we look!

Different aspects:
- how the quarks and gluons move inside the proton
Proton structure

Source: Ignazio Scimemi, review talk on EIC physics, Cracow 2018

Proton is a very complicated system...
...and its structure is more complex the closer we look!

Different aspects:
- how the quarks and gluons move inside the proton
- 3D imaging of the proton – “hadron tomography”
Proton structure

Source: Ignazio Scimemi, review talk on EIC physics, Cracow 2018

Proton is a very complicated system...
... and its structure is more complex the closer we look!

Different aspects:
- how the quarks and gluons move inside the proton
- 3D imaging of the proton – "hadron tomography"
- role of gluons and their emergent properties
Proton is a very complicated system...
... and its structure is more complex the closer we look!

Different aspects:
- how the quarks and gluons move inside the proton
- 3D imaging of the proton – “hadron tomography”
- role of gluons and their emergent properties
- how is spin decomposed
Proton structure

Source: Ignazio Scimemi, review talk on EIC physics, Cracow 2018

Proton is a very complicated system... and its structure is more complex the closer we look!

Different aspects:
- how the quarks and gluons move inside the proton
- 3D imaging of the proton – “hadron tomography”
- role of gluons and their emergent properties
- how is spin decomposed
- origin of proton mass
Proton is a very complicated system...
... and its structure is more complex the closer we look!

Different aspects:
- how the quarks and gluons move inside the proton
- 3D imaging of the proton – “hadron tomography”
- role of gluons and their emergent properties
- how is spin decomposed
- origin of proton mass
- ...
Quantifying proton structure

Outline of the talk
The Standard Model
QCD
Lattice formulation
QCD simulations
Proton structure
PDFs
Quasi-PDFs
Proton spin
Summary

Interactions of constituents of the colliding protons, the so-called partons (quarks, gluons)

Source: LHC, CERN
Different functions characterizing the behavior of partons:

- **parton distributions functions (PDFs)** – probability that a parton carries fraction \(x \) of hadron’s longitudinal momentum,
Quantifying proton structure

Different functions characterizing the behavior of partons:

- **parton distributions functions (PDFs)** – probability that a parton carries fraction x of hadron’s longitudinal momentum,
- **generalized parton distributions (GPDs)** – probe the three-dimensional structure,
- **transverse momentum dependent parton distribution functions (TMDs)** – complement the 3D picture.

Source: LHC, CERN
Parton distribution functions (PDFs)

- PDFs are simplest partonic functions.
Parton distribution functions (PDFs)

- PDFs are simplest partonic functions.
- Yet, they are essential in making predictions for collider experiments.
Parton distribution functions (PDFs)

- PDFs are simplest partonic functions.
- Yet, they are essential in making predictions for collider experiments.
- **Difficulty**: cross sections have contributions from all scales! Both perturbative and non-perturbative!
Parton distribution functions (PDFs)

- PDFs are simplest partonic functions.
- Yet, they are essential in making predictions for collider experiments.
- **Difficulty:** cross sections have contributions from all scales!

 Both perturbative and non-perturbative!

- Tool: factorization of scales.
Parton distribution functions (PDFs)

- PDFs are simplest partonic functions.
- Yet, they are essential in making predictions for collider experiments.
- **Difficulty**: cross sections have contributions from all scales! Both perturbative and non-perturbative!
- **Tool**: factorization of scales.

\[
\sigma_{AB} = \sum_{a,b=q,g} \sigma_{ab} \otimes f_{a|A}(x_1, Q^2) \otimes f_{b|B}(x_2, Q^2)
\]
Parton distribution functions (PDFs)

- PDFs are simplest partonic functions.
- Yet, they are essential in making predictions for collider experiments.
- **Difficulty**: cross sections have contributions from all scales!
 Both perturbative and non-perturbative!
- Tool: factorization of scales.

\[
\sigma_{AB} = \sum_{a,b=q,g} \sigma_{ab} \otimes f_{a|A}(x_1, Q^2) \otimes f_{b|B}(x_2, Q^2)
\]

MSTW 2008 NLO PDFs (68% C.L.)

\(x\) – probability of finding parton with a given fraction of proton’s momentum
PDFs on the lattice

- PDFs have non-perturbative nature ⇒ LATTICE?
• PDFs have non-perturbative nature ⇒ LATTICE?
• But: PDFs given in terms of non-local light-cone correlators – intrinsically Minkowskian – problem for the lattice!
PDFs on the lattice

- PDFs have non-perturbative nature ⇒ LATTICE?
- But: PDFs given in terms of non-local light-cone correlators – intrinsically Minkowskian – problem for the lattice!
PDFs on the lattice

- PDFs have non-perturbative nature ⇒ LATTICE?
- But: PDFs given in terms of non-local light-cone correlators – intrinsically Minkowskian – problem for the lattice!

\[\bar{q}(x, \mu^2, P_3) = \int \frac{dz}{4\pi} e^{ixP_3z} \langle N|\bar{\psi}(z)\Gamma A(z, 0)\psi(0)|N \rangle. \]

- *Match* quasi-PDFs to physical PDFs: Large Momentum Effective Theory (LaMET)

\[q(x, \mu) = \int_{-\infty}^{\infty} \frac{d\xi}{|\xi|} C\left(\xi, \frac{\mu}{xP_3}\right) \tilde{q}\left(\frac{x}{\xi}, \mu, P_3\right). \]
Nucleon momentum $\frac{10\pi}{48}$, $Q^2 = 4$ GeV2

Unpolarized PDF

Quasi-PDFs

Nucleon momentum \(\frac{10\pi}{48} \), \(Q^2 = 4 \text{ GeV}^2 \)

Unpolarized PDF

Polarized PDF

Nucleon momentum \(\frac{10\pi}{48} \), \(Q^2 = 4 \text{ GeV}^2 \)

Nucleon momentum \(\frac{10\pi}{48} \), \(Q^2 = 4 \text{ GeV}^2 \)

Nucleon momentum $\frac{10\pi}{48}$, $Q^2 = 4 \text{ GeV}^2$

Unpolarized PDF

$u - d$

Polarized PDF

$\Delta u - \Delta d$

Matched PDF + TMCs

Nucleon momentum $\frac{10\pi}{48}$, $Q^2 = 4 \text{ GeV}^2$

Unpolarized PDF

Polarized PDF

Review Article

A Guide to Light-Cone PDFs from Lattice QCD: An Overview of Approaches, Techniques, and Results

Krzysztof Cichy1 and Martha Constantinou2

1Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
2Department of Physics, Temple University, Philadelphia, PA 19122 - 1801, USA

Special issue Transverse Momentum Dependent Observables from Low to High Energy: Factorization, Evolution, and Global Analyses,

- discusses in detail quasi-distributions:
 - nucleon: non-singlet quark qPDFs, qGPDs, qTMDs, singlet qPDFs, gluon qPDFs; pion: qPDFs, qDAs
- reviews also other approaches:
 - hadronic tensor, auxiliary scalar quark, auxiliary heavy quark, auxiliary light quark, pseudo-distributions, “OPE without OPE”, lattice cross sections
• **Proton spin puzzle.** EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!
Proton spin puzzle. EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!
Proton spin

- **Proton spin puzzle.** EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!
- Flawed experiment? QCD incorrect?
Proton spin

- **Proton spin puzzle.** EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!
- Flawed experiment? QCD incorrect?
- Further experiments (SLAC, CERN, DESY) confirmed the puzzle, getting 25-35%.
Proton spin

- **Proton spin puzzle.** EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!
- Flawed experiment? QCD incorrect?
- Further experiments (SLAC, CERN, DESY) confirmed the puzzle, getting 25-35%.
- Again, the spin content of the proton is a non-perturbative issue ⇒ LATTICE.
Proton spin puzzle. EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!

- Flawed experiment? QCD incorrect?
- Further experiments (SLAC, CERN, DESY) confirmed the puzzle, getting 25-35%.
- Again, the spin content of the proton is a non-perturbative issue ⇒ LATTICE.

C. Alexandrou, M. Constantinou et al. (ETMC), Phys. Rev. Lett. 119 (2017) 142002
Proton spin

- **Proton spin puzzle.** EMC experiment at CERN (1988): only 4-24% of proton spin carried by the 3 valence quarks!
- Flawed experiment? QCD incorrect?
- Further experiments (SLAC, CERN, DESY) confirmed the puzzle, getting 25-35%.
- Again, the spin content of the proton is a non-perturbative issue ⇒ LATTICE.

<table>
<thead>
<tr>
<th>parton</th>
<th>S</th>
<th>L</th>
<th>$J = S + L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>0.42(1)</td>
<td>-0.11(4)</td>
<td>0.31(4)</td>
</tr>
<tr>
<td>d</td>
<td>-0.19(1)</td>
<td>0.25(4)</td>
<td>0.05(4)</td>
</tr>
<tr>
<td>s</td>
<td>-0.02(1)</td>
<td>0.07(2)</td>
<td>0.05(2)</td>
</tr>
<tr>
<td>g</td>
<td>0.13(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quarks</td>
<td>0.20(2)</td>
<td>0.21(8)</td>
<td>0.41(8)</td>
</tr>
<tr>
<td>total</td>
<td>0.54(8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.Alexandrou, M.Constantinou et al. (ETMC), Phys.Rev.Lett. 119 (2017) 142002
Proton spin

Outline of the talk
The Standard Model
QCD
Lattice formulation
QCD simulations
Proton structure
PDFs
Quasi-PDFs

Summary

C. Alexandrou, M. Constantinou et al. (ETMC), Phys.Rev.Lett. 119 (2017) 142002

SPIN DECOMPOSITION

\[J_N \]

\(u \) shaded: valence quark contributions
\(d \) solid: sea quark and gluon contributions
\(s \) shaded: valence quark contributions
\(u+d+s \) solid: sea quark and gluon contributions
\(g \) shaded: valence quark contributions
\(\text{Total} \) solid: sea quark and gluon contributions

MOMENTUM DECOMPOSITION

\[\langle x \rangle \]

\(u \) shaded: valence quark contributions
\(d \) solid: sea quark and gluon contributions
\(s \) shaded: valence quark contributions
\(u+d+s \) solid: sea quark and gluon contributions
\(g \) shaded: valence quark contributions
\(\text{Total} \) solid: sea quark and gluon contributions

Krzysztof Cichy

Zjazd Fizyków Polskich 2019 – Kraków – 21 / 22
• QCD is a very complex theory, possessing perturbative and non-perturbative features.
Summary and prospects

- QCD is a very complex theory, possessing perturbative and non-perturbative features.
- The latter can only be studied *ab initio* using Lattice QCD.
• QCD is a very complex theory, possessing perturbative and non-perturbative features.
• The latter can only be studied \textit{ab initio} using Lattice QCD.
• But: this requires lots of computing resources!
• One of the crucial areas studied with LQCD: hadron structure.
• QCD is a very complex theory, possessing perturbative and non-perturbative features.
• The latter can only be studied \textit{ab initio} using Lattice QCD.
• But: this requires lots of computing resources!
• One of the crucial areas studied with LQCD: hadron structure.
• Lattice approach allows one to calculate proton properties from first principles, with fully controlled systematics.
QCD is a very complex theory, possessing perturbative and non-perturbative features. The latter can only be studied \textit{ab initio} using Lattice QCD. But: this requires lots of computing resources! One of the crucial areas studied with LQCD: hadron structure. Lattice approach allows one to calculate proton properties from first principles, with fully controlled systematics. Still a lot to do to claim full understanding of the proton!
QCD is a very complex theory, possessing perturbative and non-perturbative features.

The latter can only be studied *ab initio* using Lattice QCD.

But: this requires lots of computing resources!

One of the crucial areas studied with LQCD: hadron structure.

Lattice approach allows one to calculate proton properties from first principles, with fully controlled systematics.

Still a lot to do to claim full understanding of the proton!

Recent insights into the proton spin and 1D structure.
Summary and prospects

- QCD is a very complex theory, possessing perturbative and non-perturbative features.
- The latter can only be studied *ab initio* using Lattice QCD.
- But: this requires lots of computing resources!
- One of the crucial areas studied with LQCD: hadron structure.
- Lattice approach allows one to calculate proton properties from first principles, with fully controlled systematics.
- Still a lot to do to claim full understanding of the proton!
- Recent insights into the proton spin and 1D structure.
- Current directions: systematics of the above, proton mass, 3D structure.
QCD is a very complex theory, possessing perturbative and non-perturbative features.

The latter can only be studied \textit{ab initio} using Lattice QCD.

But: this requires lots of computing resources!

One of the crucial areas studied with LQCD: hadron structure.

Lattice approach allows one to calculate proton properties from first principles, with fully controlled systematics.

Still a lot to do to claim full understanding of the proton!

Recent insights into the proton spin and 1D structure.

Current directions: systematics of the above, proton mass, 3D structure.

Thank you for your attention!